RFC 2813 (RFC2813)

Internet RFC/STD/FYI/BCP Archives

[ RFC Index | RFC Search | Usenet FAQs | Web FAQs | Documents | Cities ]

Alternate Formats: rfc2813.txt | rfc2813.txt.pdf

RFC 2813 - Internet Relay Chat: Server Protocol



Network Working Group                                           C. Kalt
Request for Comments: 2813                                   April 2000
Updates: 1459
Category: Informational

                  Internet Relay Chat: Server Protocol

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   While based on the client-server model, the IRC (Internet Relay Chat)
   protocol allows servers to connect to each other effectively forming
   a network.

   This document defines the protocol used by servers to talk to each
   other.  It was originally a superset of the client protocol but has
   evolved differently.

   First formally documented in May 1993 as part of RFC 1459 [IRC], most
   of the changes brought since then can be found in this document as
   development was focused on making the protocol scale better.  Better
   scalability has allowed existing world-wide networks to keep growing
   and reach sizes which defy the old specification.

Table of Contents

   1.  Introduction ...............................................   3
   2.  Global database ............................................   3
      2.1  Servers ................................................   3
      2.2  Clients ................................................   4
         2.2.1  Users .............................................   4
         2.2.2  Services ..........................................   4
      2.3  Channels ...............................................   4
   3.  The IRC Server Specification ...............................   5
      3.1  Overview ...............................................   5
      3.2  Character codes ........................................   5
      3.3  Messages ...............................................   5
         3.3.1  Message format in Augmented BNF ...................   6
      3.4  Numeric replies ........................................   7
   4.  Message Details ............................................   7
      4.1  Connection Registration ................................   8
         4.1.1  Password message ..................................   8
         4.1.2  Server message ....................................   9
         4.1.3  Nick ..............................................  10
         4.1.4  Service message ...................................  11
         4.1.5  Quit ..............................................  12
         4.1.6  Server quit message ...............................  13
      4.2  Channel operations .....................................  14
         4.2.1  Join message ......................................  14
         4.2.2  Njoin message .....................................  15
         4.2.3  Mode message ......................................  16
   5.  Implementation details  ....................................  16
      5.1  Connection 'Liveness' ..................................  16
      5.2  Accepting a client to server connection ................  16
         5.2.1  Users .............................................  16
         5.2.2  Services ..........................................  17
      5.3  Establishing a server-server connection. ...............  17
         5.3.1  Link options ......................................  17
            5.3.1.1  Compressed server to server links ............  18
            5.3.1.2  Anti abuse protections .......................  18
         5.3.2  State information exchange when connecting ........  18
      5.4  Terminating server-client connections ..................  19
      5.5  Terminating server-server connections ..................  19
      5.6  Tracking nickname changes ..............................  19
      5.7  Tracking recently used nicknames .......................  20
      5.8  Flood control of clients ...............................  20
      5.9  Non-blocking lookups ...................................  21
         5.9.1  Hostname (DNS) lookups ............................  21
         5.9.2  Username (Ident) lookups ..........................  21
   6.  Current problems ...........................................  21
      6.1  Scalability ............................................  21
      6.2  Labels .................................................  22

         6.2.1  Nicknames .........................................  22
         6.2.2  Channels ..........................................  22
         6.2.3  Servers ...........................................  22
      6.3  Algorithms .............................................  22
   7.  Security Considerations ....................................  23
      7.1  Authentication .........................................  23
      7.2  Integrity ..............................................  23
   8.  Current support and availability ...........................  24
   9.  Acknowledgements ...........................................  24
   10.  References ................................................  24
   11.  Author's Address ..........................................  25
   12. Full Copyright Statement ...................................  26

1. Introduction

   This document is intended for people working on implementing an IRC
   server but will also be useful to anyone implementing an IRC service.

   Servers provide the three basic services required for realtime
   conferencing defined by the "Internet Relay Chat: Architecture"
   [IRC-ARCH]: client locator (via the client protocol [IRC-CLIENT]),
   message relaying (via the server protocol defined in this document)
   and channel hosting and management (following specific rules [IRC-
   CHAN]).

2. Global database

   Although the IRC Protocol defines a fairly distributed model, each
   server maintains a "global state database" about the whole IRC
   network.  This database is, in theory, identical on all servers.

2.1 Servers

   Servers are uniquely identified by their name which has a maximum
   length of sixty three (63) characters.  See the protocol grammar
   rules (section 3.3.1) for what may and may not be used in a server
   name.

   Each server is typically known by all other servers, however it is
   possible to define a "hostmask" to group servers together according
   to their name.  Inside the hostmasked area, all the servers have a
   name which matches the hostmask, and any other server with a name
   matching the hostmask SHALL NOT be connected to the IRC network
   outside the hostmasked area.  Servers which are outside the area have
   no knowledge of the individual servers present inside the area,
   instead they are presented with a virtual server which has the
   hostmask for name.

2.2 Clients

   For each client, all servers MUST have the following information: a
   netwide unique identifier (whose format depends on the type of
   client) and the server to which the client is connected.

2.2.1 Users

   Each user is distinguished from other users by a unique nickname
   having a maximum length of nine (9) characters.  See the protocol
   grammar rules (section 3.3.1) for what may and may not be used in a
   nickname.  In addition to the nickname, all servers MUST have the
   following information about all users: the name of the host that the
   user is running on, the username of the user on that host, and the
   server to which the client is connected.

2.2.2 Services

   Each service is distinguished from other services by a service name
   composed of a nickname and a server name.  The nickname has a maximum
   length of nine (9) characters.  See the protocol grammar rules
   (section 3.3.1) for what may and may not be used in a nickname.  The
   server name used to compose the service name is the name of the
   server to which the service is connected.  In addition to this
   service name all servers MUST know the service type.

   Services differ from users by the format of their identifier, but
   more importantly services and users don't have the same type of
   access to the server: services can request part or all of the global
   state information that a server maintains, but have a more restricted
   set of commands available to them (See "IRC Client Protocol" [IRC-
   CLIENT] for details on which) and are not allowed to join channels.
   Finally services are not usually subject to the "Flood control"
   mechanism described in section 5.8.

2.3 Channels

   Alike services, channels have a scope [IRC-CHAN] and are not
   necessarily known to all servers.  When a channel existence is known
   to a server, the server MUST keep track of the channel members, as
   well as the channel modes.

3. The IRC Server Specification

3.1 Overview

   The protocol as described herein is for use with server to server
   connections.  For client to server connections, see the IRC Client
   Protocol specification.

   There are, however, more restrictions on client connections (which
   are considered to be untrustworthy) than on server connections.

3.2 Character codes

   No specific character set is specified. The protocol is based on a a
   set of codes which are composed of eight (8) bits, making up an
   octet.  Each message may be composed of any number of these octets;
   however, some octet values are used for control codes which act as
   message delimiters.

   Regardless of being an 8-bit protocol, the delimiters and keywords
   are such that protocol is mostly usable from US-ASCII terminal and a
   telnet connection.

   Because of IRC's Scandinavian origin, the characters {}|^ are
   considered to be the lower case equivalents of the characters []\~,
   respectively. This is a critical issue when determining the
   equivalence of two nicknames, or channel names.

3.3 Messages

   Servers and clients send each other messages which may or may not
   generate a reply.  Most communication between servers do not generate
   any reply, as servers mostly perform routing tasks for the clients.

   Each IRC message may consist of up to three main parts: the prefix
   (OPTIONAL), the command, and the command parameters (maximum of
   fifteen (15)).  The prefix, command, and all parameters are separated
   by one ASCII space character (0x20) each.

   The presence of a prefix is indicated with a single leading ASCII
   colon character (':', 0x3b), which MUST be the first character of the
   message itself.  There MUST be NO gap (whitespace) between the colon
   and the prefix.  The prefix is used by servers to indicate the true
   origin of the message.  If the prefix is missing from the message, it
   is assumed to have originated from the connection from which it was
   received.  Clients SHOULD not use a prefix when sending a message
   from themselves; if they use one, the only valid prefix is the
   registered nickname associated with the client.

   When a server receives a message, it MUST identify its source using
   the (eventually assumed) prefix.  If the prefix cannot be found in
   the server's internal database, it MUST be discarded, and if the
   prefix indicates the message comes from an (unknown) server, the link
   from which the message was received MUST be dropped.  Dropping a link
   in such circumstances is a little excessive but necessary to maintain
   the integrity of the network and to prevent future problems.  Another
   common error condition is that the prefix found in the server's
   internal database identifies a different source (typically a source
   registered from a different link than from which the message
   arrived).  If the message was received from a server link and the
   prefix identifies a client, a KILL message MUST be issued for the
   client and sent to all servers.  In other cases, the link from which
   the message arrived SHOULD be dropped for clients, and MUST be
   dropped for servers.  In all cases, the message MUST be discarded.

   The command MUST either be a valid IRC command or a three (3) digit
   number represented in ASCII text.

   IRC messages are always lines of characters terminated with a CR-LF
   (Carriage Return - Line Feed) pair, and these messages SHALL NOT
   exceed 512 characters in length, counting all characters including
   the trailing CR-LF. Thus, there are 510 characters maximum allowed
   for the command and its parameters.  There is no provision for
   continuation message lines.  See section 5 for more details about
   current implementations.

3.3.1 Message format in Augmented BNF

   The protocol messages must be extracted from the contiguous stream of
   octets.  The current solution is to designate two characters, CR and
   LF, as message separators.  Empty messages are silently ignored,
   which permits use of the sequence CR-LF between messages without
   extra problems.

   The extracted message is parsed into the components <prefix>,
   <command> and list of parameters (<params>).

   The Augmented BNF representation for this is found in "IRC Client
   Protocol" [IRC-CLIENT].

   The extended prefix (["!" user "@" host ]) MUST NOT be used in server
   to server communications and is only intended for server to client
   messages in order to provide clients with more useful information
   about who a message is from without the need for additional queries.

3.4 Numeric replies

   Most of the messages sent to the server generate a reply of some
   sort.  The most common reply is the numeric reply, used for both
   errors and normal replies.  The numeric reply MUST be sent as one
   message consisting of the sender prefix, the three digit numeric, and
   the target of the reply.  A numeric reply is not allowed to originate
   from a client; any such messages received by a server are silently
   dropped. In all other respects, a numeric reply is just like a normal
   message, except that the keyword is made up of 3 numeric digits
   rather than a string of letters.  A list of different replies is
   supplied in "IRC Client Protocol" [IRC-CLIENT].

4. Message Details

   All the messages recognized by the IRC server and client are
   described in the IRC Client Protocol specification.

   Where the reply ERR_NOSUCHSERVER is returned, it means that the
   target of the message could not be found.  The server MUST NOT send
   any other replies after this error for that command.

   The server to which a client is connected is required to parse the
   complete message, returning any appropriate errors.  If the server
   encounters a fatal error while parsing a message, an error MUST be
   sent back to the client and the parsing terminated.  A fatal error
   may follow from incorrect command, a destination which is otherwise
   unknown to the server (server, client or channel names fit this
   category), not enough parameters or incorrect privileges.

   If a full set of parameters is presented, then each MUST be checked
   for validity and appropriate responses sent back to the client.  In
   the case of messages which use parameter lists using the comma as an
   item separator, a reply MUST be sent for each item.

   In the examples below, some messages appear using the full format:

   :Name COMMAND parameter list

   Such examples represent a message from "Name" in transit between
   servers, where it is essential to include the name of the original
   sender of the message so remote servers may send back a reply along
   the correct path.

   The message details for client to server communication are described
   in the "IRC Client Protocol" [IRC-CLIENT].  Some sections in the
   following pages apply to some of these messages, they are additions
   to the message specifications which are only relevant to server to

   server communication, or to the server implementation.  The messages
   which are introduced here are only used for server to server
   communication.

4.1 Connection Registration

   The commands described here are used to register a connection with
   another IRC server.

4.1.1 Password message

      Command: PASS
   Parameters: <password> <version> <flags> [<options>]

   The PASS command is used to set a 'connection password'.  The
   password MUST be set before any attempt to register the connection is
   made.  Currently this means that servers MUST send a PASS command
   before any SERVER command.  Only one (1) PASS command SHALL be
   accepted from a connection.

   The last three (3) parameters MUST be ignored if received from a
   client (e.g. a user or a service).  They are only relevant when
   received from a server.

   The <version> parameter is a string of at least four (4) characters,
   and up to fourteen (14) characters.  The first four (4) characters
   MUST be digits and indicate the protocol version known by the server
   issuing the message.  The protocol described by this document is
   version 2.10 which is encoded as "0210".  The remaining OPTIONAL
   characters are implementation dependent and should describe the
   software version number.

   The <flags> parameter is a string of up to one hundred (100)
   characters.  It is composed of two substrings separated by the
   character "|" (%x7C).  If present, the first substring MUST be the
   name of the implementation.  The reference implementation (See
   Section 8, "Current support and availability") uses the string "IRC".
   If a different implementation is written, which needs an identifier,
   then that identifier should be registered through publication of an
   RFC. The second substring is implementation dependent.  Both
   substrings are OPTIONAL, but the character "|" is REQUIRED.  The
   character "|" MUST NOT appear in either substring.

   Finally, the last parameter, <options>, is used for link options.
   The only options defined by the protocol are link compression (using
   the character "Z"), and an abuse protection flag (using the character

   "P").  See sections 5.3.1.1 (Compressed server to server links) and
   5.3.1.2 (Anti abuse protections) respectively for more information on
   these options.

   Numeric Replies:

           ERR_NEEDMOREPARAMS              ERR_ALREADYREGISTRED

   Example:

        PASS moresecretpassword 0210010000 IRC|aBgH$ Z

4.1.2 Server message

      Command: SERVER
   Parameters: <servername> <hopcount> <token> <info>

   The SERVER command is used to register a new server. A new connection
   introduces itself as a server to its peer.  This message is also used
   to pass server data over whole net.  When a new server is connected
   to net, information about it MUST be broadcasted to the whole
   network.

   The <info> parameter may contain space characters.

   <hopcount> is used to give all servers some internal information on
   how far away each server is.  Local peers have a value of 0, and each
   passed server increments the value.  With a full server list, it
   would be possible to construct a map of the entire server tree, but
   hostmasks prevent this from being done.

   The <token> parameter is an unsigned number used by servers as an
   identifier.  This identifier is subsequently used to reference a
   server in the NICK and SERVICE messages sent between servers.  Server
   tokens only have a meaning for the point-to-point peering they are
   used and MUST be unique for that connection.  They are not global.

   The SERVER message MUST only be accepted from either (a) a connection
   which is yet to be registered and is attempting to register as a
   server, or (b) an existing connection to another server, in which
   case the SERVER message is introducing a new server behind that
   server.

   Most errors that occur with the receipt of a SERVER command result in
   the connection being terminated by the destination host (target
   SERVER).  Because of the severity of such event, error replies are
   usually sent using the "ERROR" command rather than a numeric.

   If a SERVER message is parsed and it attempts to introduce a server
   which is already known to the receiving server, the connection, from
   which that message arrived, MUST be closed (following the correct
   procedures), since a duplicate route to a server has been formed and
   the acyclic nature of the IRC tree breaks.  In some conditions, the
   connection from which the already known server has registered MAY be
   closed instead.  It should be noted that this kind of error can also
   be the result of a second running server, problem which cannot be
   fixed within the protocol and typically requires human intervention.
   This type of problem is particularly insidious, as it can quite
   easily result in part of the IRC network to be isolated, with one of
   the two servers connected to each partition therefore making it
   impossible for the two parts to unite.

   Numeric Replies:

           ERR_ALREADYREGISTRED

   Example:

   SERVER test.oulu.fi 1 1 :Experimental server ; New server
                                   test.oulu.fi introducing itself and
                                   attempting to register.

   :tolsun.oulu.fi SERVER csd.bu.edu 5 34 :BU Central Server ; Server
                                   tolsun.oulu.fi is our uplink for
                                   csd.bu.edu which is 5 hops away.  The
                                   token "34" will be used by
                                   tolsun.oulu.fi when introducing new
                                   users or services connected to
                                   csd.bu.edu.

4.1.3 Nick

      Command: NICK
   Parameters: <nickname> <hopcount> <username> <host> <servertoken>
               <umode> <realname>

   This form of the NICK message MUST NOT be allowed from user
   connections. However, it MUST be used instead of the NICK/USER pair
   to notify other servers of new users joining the IRC network.

   This message is really the combination of three distinct messages:
   NICK, USER and MODE [IRC-CLIENT].

   The <hopcount> parameter is used by servers to indicate how far away
   a user is from its home server.  A local connection has a hopcount of
   0.  The hopcount value is incremented by each passed server.

   The <servertoken> parameter replaces the <servername> parameter of
   the USER (See section 4.1.2 for more information on server tokens).

   Examples:

   NICK syrk 5 kalt millennium.stealth.net 34 +i :Christophe Kalt ; New
                                   user with nickname "syrk", username
                                   "kalt", connected from host
                                   "millennium.stealth.net" to server
                                   "34" ("csd.bu.edu" according to the
                                   previous example).

   :krys NICK syrk                 ; The other form of the NICK message,
                                   as defined in "IRC Client Protocol"
                                   [IRC-CLIENT] and used between
                                   servers: krys changed his nickname to
                                   syrk

4.1.4 Service message

      Command: SERVICE
   Parameters: <servicename> <servertoken> <distribution> <type>
                <hopcount> <info>

   The SERVICE command is used to introduce a new service.  This form of
   the SERVICE message SHOULD NOT be allowed from client (unregistered,
   or registered) connections.  However, it MUST be used between servers
   to notify other servers of new services joining the IRC network.

   The <servertoken> is used to identify the server to which the service
   is connected.  (See section 4.1.2 for more information on server
   tokens).

   The <hopcount> parameter is used by servers to indicate how far away
   a service is from its home server.  A local connection has a hopcount
   of 0.  The hopcount value is incremented by each passed server.

   The <distribution> parameter is used to specify the visibility of a
   service.  The service may only be known to servers which have a name
   matching the distribution.  For a matching server to have knowledge
   of the service, the network path between that server and the server
   to which the service is connected MUST be composed of servers whose
   names all match the mask.  Plain "*" is used when no restriction is
   wished.

   The <type> parameter is currently reserved for future usage.

   Numeric Replies:

           ERR_ALREADYREGISTRED            ERR_NEEDMOREPARAMS
           ERR_ERRONEUSNICKNAME
           RPL_YOURESERVICE                RPL_YOURHOST
           RPL_MYINFO

   Example:

SERVICE dict@irc.fr 9 *.fr 0 1 :French Dictionary r" registered on
                                   server "9" is being announced to
                                   another server.  This service will
                                   only be available on servers whose
                                   name matches "*.fr".

4.1.5 Quit

      Command: QUIT
   Parameters: [<Quit Message>]

   A client session ends with a quit message.  The server MUST close the
   connection to a client which sends a QUIT message. If a "Quit
   Message" is given, this will be sent instead of the default message,
   the nickname or service name.

   When "netsplit" (See Section 4.1.6) occur, the "Quit Message" is
   composed of the names of two servers involved, separated by a space.
   The first name is that of the server which is still connected and the
   second name is either that of the server which has become
   disconnected or that of the server to which the leaving client was
   connected:

      <Quit Message> =  ":" servername SPACE servername

   Because the "Quit Message" has a special meaning for "netsplits",
   servers SHOULD NOT allow a client to use a <Quit Message> in the
   format described above.

   If, for some other reason, a client connection is closed without the
   client issuing a QUIT command (e.g. client dies and EOF occurs on
   socket), the server is REQUIRED to fill in the quit message with some
   sort of message reflecting the nature of the event which caused it to
   happen.  Typically, this is done by reporting a system specific
   error.

   Numeric Replies:

           None.

   Examples:

   :WiZ QUIT :Gone to have lunch   ; Preferred message format.

4.1.6 Server quit message

      Command: SQUIT
   Parameters: <server> <comment>

   The SQUIT message has two distinct uses.

   The first one (described in "Internet Relay Chat: Client Protocol"
   [IRC-CLIENT]) allows operators to break a local or remote server
   link.  This form of the message is also eventually used by servers to
   break a remote server link.

   The second use of this message is needed to inform other servers when
   a "network split" (also known as "netsplit") occurs, in other words
   to inform other servers about quitting or dead servers.  If a server
   wishes to break the connection to another server it MUST send a SQUIT
   message to the other server, using the name of the other server as
   the server parameter, which then closes its connection to the
   quitting server.

   The <comment> is filled in by servers which SHOULD place an error or
   similar message here.

   Both of the servers which are on either side of the connection being
   closed are REQUIRED to send out a SQUIT message (to all its other
   server connections) for all other servers which are considered to be
   behind that link.

   Similarly, a QUIT message MAY be sent to the other still connected
   servers on behalf of all clients behind that quitting link.  In
   addition to this, all channel members of a channel which lost a
   member due to the "split" MUST be sent a QUIT message.  Messages to
   channel members are generated by each client's local server.

   If a server connection is terminated prematurely (e.g., the server on
   the other end of the link died), the server which detects this
   disconnection is REQUIRED to inform the rest of the network that the
   connection has closed and fill in the comment field with something
   appropriate.

   When a client is removed as the result of a SQUIT message, the server
   SHOULD add the nickname to the list of temporarily unavailable
   nicknames in an attempt to prevent future nickname collisions. See

   section 5.7 (Tracking recently used nicknames) for more information
   on this procedure.

   Numeric replies:

           ERR_NOPRIVILEGES                ERR_NOSUCHSERVER
           ERR_NEEDMOREPARAMS

   Example:

   SQUIT tolsun.oulu.fi :Bad Link ?  ; the server link tolson.oulu.fi
                                   has been terminated because of "Bad
                                   Link".

   :Trillian SQUIT cm22.eng.umd.edu :Server out of control ; message
                                   from Trillian to disconnect
                                   "cm22.eng.umd.edu" from the net
                                   because "Server out of control".

4.2 Channel operations

   This group of messages is concerned with manipulating channels, their
   properties (channel modes), and their contents (typically users).  In
   implementing these, a number of race conditions are inevitable when
   users at opposing ends of a network send commands which will
   ultimately clash.  It is also REQUIRED that servers keep a nickname
   history to ensure that wherever a <nick> parameter is given, the
   server check its history in case it has recently been changed.

4.2.1 Join message

      Command: JOIN
   Parameters: <channel>[ %x7 <modes> ]
               *( "," <channel>[ %x7 <modes> ] )

   The JOIN command is used by client to start listening a specific
   channel. Whether or not a client is allowed to join a channel is
   checked only by the local server the client is connected to; all
   other servers automatically add the user to the channel when the
   command is received from other servers.

   Optionally, the user status (channel modes 'O', 'o', and 'v') on the
   channel may be appended to the channel name using a control G (^G or
   ASCII 7) as separator.  Such data MUST be ignored if the message
   wasn't received from a server.  This format MUST NOT be sent to
   clients, it can only be used between servers and SHOULD be avoided.

   The JOIN command MUST be broadcast to all servers so that each server
   knows where to find the users who are on the channel.  This allows
   optimal delivery of PRIVMSG and NOTICE messages to the channel.

   Numeric Replies:

           ERR_NEEDMOREPARAMS              ERR_BANNEDFROMCHAN
           ERR_INVITEONLYCHAN              ERR_BADCHANNELKEY
           ERR_CHANNELISFULL               ERR_BADCHANMASK
           ERR_NOSUCHCHANNEL               ERR_TOOMANYCHANNELS
           ERR_TOOMANYTARGETS              ERR_UNAVAILRESOURCE
           RPL_TOPIC

   Examples:

   :WiZ JOIN #Twilight_zone        ; JOIN message from WiZ

4.2.2 Njoin message

      Command: NJOIN
   Parameters: <channel> [ "@@" / "@" ] [ "+" ] <nickname>
                         *( "," [ "@@" / "@" ] [ "+" ] <nickname> )

   The NJOIN message is used between servers only.  If such a message is
   received from a client, it MUST be ignored.  It is used when two
   servers connect to each other to exchange the list of channel members
   for each channel.

   Even though the same function can be performed by using a succession
   of JOIN, this message SHOULD be used instead as it is more efficient.
   The prefix "@@" indicates that the user is the "channel creator", the
   character "@" alone indicates a "channel operator", and the character
   '+' indicates that the user has the voice privilege.

   Numeric Replies:

           ERR_NEEDMOREPARAMS              ERR_NOSUCHCHANNEL
           ERR_ALREADYREGISTRED

   Examples:

   :ircd.stealth.net NJOIN #Twilight_zone :@WiZ,+syrk,avalon ; NJOIN
                                   message from ircd.stealth.net
                                   announcing users joining the
                                   #Twilight_zone channel: WiZ with
                                   channel operator status, syrk with
                                   voice privilege and avalon with no
                                   privilege.

4.2.3 Mode message

   The MODE message is a dual-purpose command in IRC.  It allows both
   usernames and channels to have their mode changed.

   When parsing MODE messages, it is RECOMMENDED that the entire message
   be parsed first, and then the changes which resulted passed on.

   It is REQUIRED that servers are able to change channel modes so that
   "channel creator" and "channel operators" may be created.

5. Implementation details

   A the time of writing, the only current implementation of this
   protocol is the IRC server, version 2.10. Earlier versions may
   implement some or all of the commands described by this document with
   NOTICE messages replacing many of the numeric replies. Unfortunately,
   due to backward compatibility requirements, the implementation of
   some parts of this document varies with what is laid out.  One
   notable difference is:

        * recognition that any LF or CR anywhere in a message marks
          the end of that message (instead of requiring CR-LF);

   The rest of this section deals with issues that are mostly of
   importance to those who wish to implement a server but some parts
   also apply directly to clients as well.

5.1 Connection 'Liveness'

   To detect when a connection has died or become unresponsive, the
   server MUST poll each of its connections.  The PING command (See "IRC
   Client Protocol" [IRC-CLIENT]) is used if the server doesn't get a
   response from its peer in a given amount of time.

   If a connection doesn't respond in time, its connection is closed
   using the appropriate procedures.

5.2 Accepting a client to server connection

5.2.1 Users

   When a server successfully registers a new user connection, it is
   REQUIRED to send to the user unambiguous messages stating: the user
   identifiers upon which it was registered (RPL_WELCOME), the server
   name and version (RPL_YOURHOST), the server birth information
   (RPL_CREATED), available user and channel modes (RPL_MYINFO), and it
   MAY send any introductory messages which may be deemed appropriate.

   In particular the server SHALL send the current user/service/server
   count (as per the LUSER reply) and finally the MOTD (if any, as per
   the MOTD reply).

   After dealing with registration, the server MUST then send out to
   other servers the new user's nickname (NICK message), other
   information as supplied by itself (USER message) and as the server
   could discover (from DNS servers).  The server MUST NOT send this
   information out with a pair of NICK and USER messages as defined in
   "IRC Client Protocol" [IRC-CLIENT], but MUST instead take advantage
   of the extended NICK message defined in section 4.1.3.

5.2.2 Services

   Upon successfully registering a new service connection, the server is
   subject to the same kind of REQUIREMENTS as for a user.  Services
   being somewhat different, only the following replies are sent:
   RPL_YOURESERVICE, RPL_YOURHOST, RPL_MYINFO.

   After dealing with this, the server MUST then send out to other
   servers (SERVICE message) the new service's nickname and other
   information as supplied by the service (SERVICE message) and as the
   server could discover (from DNS servers).

5.3 Establishing a server-server connection.

   The process of establishing a server-to-server connection is fraught
   with danger since there are many possible areas where problems can
   occur - the least of which are race conditions.

   After a server has received a connection following by a PASS/SERVER
   pair which were recognized as being valid, the server SHOULD then
   reply with its own PASS/SERVER information for that connection as
   well as all of the other state information it knows about as
   described below.

   When the initiating server receives a PASS/SERVER pair, it too then
   checks that the server responding is authenticated properly before
   accepting the connection to be that server.

5.3.1 Link options

   Server links are based on a common protocol (defined by this
   document) but a particular link MAY set specific options using the
   PASS message (See Section 4.1.1).

5.3.1.1 Compressed server to server links

   If a server wishes to establish a compressed link with its peer, it
   MUST set the 'Z' flag in the options parameter to the PASS message.
   If both servers request compression and both servers are able to
   initialize the two compressed streams, then the remainder of the
   communication is to be compressed.  If any server fails to initialize
   the stream, it will send an uncompressed ERROR message to its peer
   and close the connection.

   The data format used for the compression is described by RFC 1950
   [ZLIB], RFC 1951 [DEFLATE] and RFC 1952 [GZIP].

5.3.1.2 Anti abuse protections

   Most servers implement various kinds of protections against possible
   abusive behaviours from non trusted parties (typically users).  On
   some networks, such protections are indispensable, on others they are
   superfluous.  To require that all servers implement and enable such
   features on a particular network, the 'P' flag is used when two
   servers connect.  If this flag is present, it means that the server
   protections are enabled, and that the server REQUIRES all its server
   links to enable them as well.

   Commonly found protections are described in sections 5.7 (Tracking
   recently used nicknames) and 5.8 (Flood control of clients).

5.3.2 State information exchange when connecting

   The order of state information being exchanged between servers is
   essential.  The REQUIRED order is as follows:

           * all known servers;

           * all known client information;

           * all known channel information.

   Information regarding servers is sent via extra SERVER messages,
   client information with NICK and SERVICE messages and channels with
   NJOIN/MODE messages.

   NOTE: channel topics SHOULD NOT be exchanged here because the TOPIC
   command overwrites any old topic information, so at best, the two
   sides of the connection would exchange topics.

   By passing the state information about servers first, any collisions
   with servers that already exist occur before nickname collisions
   caused by a second server introducing a particular nickname.  Due to
   the IRC network only being able to exist as an acyclic graph, it may
   be possible that the network has already reconnected in another
   location.  In this event, the place where the server collision occurs
   indicates where the net needs to split.

5.4 Terminating server-client connections

   When a client connection unexpectedly closes, a QUIT message is
   generated on behalf of the client by the server to which the client
   was connected.  No other message is to be generated or used.

5.5 Terminating server-server connections

   If a server-server connection is closed, either via a SQUIT command
   or "natural" causes, the rest of the connected IRC network MUST have
   its information updated by the server which detected the closure.
   The terminating server then sends a list of SQUITs (one for each
   server behind that connection).  (See Section 4.1.6 (SQUIT)).

5.6 Tracking nickname changes

   All IRC servers are REQUIRED to keep a history of recent nickname
   changes.  This is important to allow the server to have a chance of
   keeping in touch of things when nick-change race conditions occur
   with commands manipulating them.  Messages which MUST trace nick
   changes are:

           * KILL (the nick being disconnected)

           * MODE (+/- o,v on channels)

           * KICK (the nick being removed from channel)

      No other commands need to check nick changes.

   In the above cases, the server is required to first check for the
   existence of the nickname, then check its history to see who that
   nick now belongs to (if anyone!).  This reduces the chances of race
   conditions but they can still occur with the server ending up
   affecting the wrong client.  When performing a change trace for an
   above command it is RECOMMENDED that a time range be given and
   entries which are too old ignored.

   For a reasonable history, a server SHOULD be able to keep previous
   nickname for every client it knows about if they all decided to
   change.  This size is limited by other factors (such as memory, etc).

5.7 Tracking recently used nicknames

   This mechanism is commonly known as "Nickname Delay", it has been
   proven to significantly reduce the number of nickname collisions
   resulting from "network splits"/reconnections as well as abuse.

   In addition of keeping track of nickname changes, servers SHOULD keep
   track of nicknames which were recently used and were released as the
   result of a "network split" or a KILL message.  These nicknames are
   then unavailable to the server local clients and cannot be re-used
   (even though they are not currently in use) for a certain period of
   time.

   The duration for which a nickname remains unavailable SHOULD be set
   considering many factors among which are the size (user wise) of the
   IRC network, and the usual duration of "network splits".  It SHOULD
   be uniform on all servers for a given IRC network.

5.8 Flood control of clients

   With a large network of interconnected IRC servers, it is quite easy
   for any single client attached to the network to supply a continuous
   stream of messages that result in not only flooding the network, but
   also degrading the level of service provided to others.  Rather than
   require every 'victim' to provide their own protection, flood
   protection was written into the server and is applied to all clients
   except services.  The current algorithm is as follows:

   * check to see if client's `message timer' is less than current time
     (set to be equal if it is);

   * read any data present from the client;

   * while the timer is less than ten (10) seconds ahead of the current
     time, parse any present messages and penalize the client by two (2)
     seconds for each message;

   * additional penalties MAY be used for specific commands which
     generate a lot of traffic across the network.

   This in essence means that the client may send one (1) message every
   two (2) seconds without being adversely affected.  Services MAY also
   be subject to this mechanism.

5.9 Non-blocking lookups

   In a real-time environment, it is essential that a server process
   does as little waiting as possible so that all the clients are
   serviced fairly.  Obviously this requires non-blocking IO on all
   network read/write operations.  For normal server connections, this
   was not difficult, but there are other support operations that may
   cause the server to block (such as disk reads).  Where possible, such
   activity SHOULD be performed with a short timeout.

5.9.1 Hostname (DNS) lookups

   Using the standard resolver libraries from Berkeley and others has
   meant large delays in some cases where replies have timed out.  To
   avoid this, a separate set of DNS routines were written for the
   current implementation.  Routines were setup for non-blocking IO
   operations with local cache, and then polled from within the main
   server IO loop.

5.9.2 Username (Ident) lookups

   Although there are numerous ident libraries (implementing the
   "Identification Protocol" [IDENT]) for use and inclusion into other
   programs, these caused problems since they operated in a synchronous
   manner and resulted in frequent delays.  Again the solution was to
   write a set of routines which would cooperate with the rest of the
   server and work using non-blocking IO.

6. Current problems

   There are a number of recognized problems with this protocol, all of
   which are hoped to be solved sometime in the near future during its
   rewrite.  Currently, work is underway to find working solutions to
   these problems.

6.1 Scalability

   It is widely recognized that this protocol does not scale
   sufficiently well when used in a large arena.  The main problem comes
   from the requirement that all servers know about all other servers
   and clients and that information regarding them be updated as soon as
   it changes.  It is also desirable to keep the number of servers low
   so that the path length between any two points is kept minimal and
   the spanning tree as strongly branched as possible.

6.2 Labels

   The current IRC protocol has 4 types of labels: the nickname, the
   channel name, the server name and the service name.  Each of the four
   types has its own domain and no duplicates are allowed inside that
   domain.  Currently, it is possible for users to pick the label for
   any of the first three, resulting in collisions.  It is widely
   recognized that this needs reworking, with a plan for unique names
   for nicks that don't collide being desirable as well as a solution
   allowing a cyclic tree.

6.2.1 Nicknames

   The idea of the nickname on IRC is very convenient for users to use
   when talking to each other outside of a channel, but there is only a
   finite nickname space and being what they are, it's not uncommon for
   several people to want to use the same nick.  If a nickname is chosen
   by two people using this protocol, either one will not succeed or
   both will be removed by use of KILL (See Section 3.7.1 of "IRC Client
   Protocol" [IRC-CLIENT]).

6.2.2 Channels

   The current channel layout requires that all servers know about all
   channels, their inhabitants and properties.  Besides not scaling
   well, the issue of privacy is also a concern.  A collision of
   channels is treated as an inclusive event (people from both nets on
   channel with common name are considered to be members of it) rather
   than an exclusive one such as used to solve nickname collisions.

   This protocol defines "Safe Channels" which are very unlikely to be
   the subject of a channel collision.  Other channel types are kept for
   backward compatibility.

6.2.3 Servers

   Although the number of servers is usually small relative to the
   number of users and channels, they too are currently REQUIRED to be
   known globally, either each one separately or hidden behind a mask.

6.3 Algorithms

   In some places within the server code, it has not been possible to
   avoid N^2 algorithms such as checking the channel list of a set of
   clients.

   In current server versions, there are only few database consistency
   checks, most of the time each server assumes that a neighbouring
   server is correct.  This opens the door to large problems if a
   connecting server is buggy or otherwise tries to introduce
   contradictions to the existing net.

   Currently, because of the lack of unique internal and global labels,
   there are a multitude of race conditions that exist.  These race
   conditions generally arise from the problem of it taking time for
   messages to traverse and effect the IRC network.  Even by changing to
   unique labels, there are problems with channel-related commands being
   disrupted.

7. Security Considerations

7.1 Authentication

   Servers only have two means of authenticating incoming connections:
   plain text password, and DNS lookups.  While these methods are weak
   and widely recognized as unsafe, their combination has proven to be
   sufficient in the past:

    * public networks typically allow user connections with only few
      restrictions, without requiring accurate authentication.

    * private networks which operate in a controlled environment often
      use home-grown authentication mechanisms not available on the
      internet: reliable ident servers [IDENT], or other proprietary
      mechanisms.

   The same comments apply to the authentication of IRC Operators.

   It should also be noted that while there has been no real demand over
   the years for stronger authentication, and no real effort to provide
   better means to safely authenticate users, the current protocol
   offers enough to be able to easily plug-in external authentication
   methods based on the information that a client can submit to the
   server upon connection: nickname, username, password.

7.2 Integrity

   Since the PASS and OPER messages of the IRC protocol are sent in
   clear text, a stream layer encryption mechanism (like "The TLS
   Protocol" [TLS]) could be used to protect these transactions.

8. Current support and availability

      Mailing lists for IRC related discussion:
        General discussion: ircd-users@irc.org
        Protocol development: ircd-dev@irc.org

      Software implementations:
        ftp://ftp.irc.org/irc/server
        ftp://ftp.funet.fi/pub/unix/irc
        ftp://coombs.anu.edu.au/pub/irc

      Newsgroup: alt.irc

9. Acknowledgements

   Parts of this document were copied from the RFC 1459 [IRC] which
   first formally documented the IRC Protocol.  It has also benefited
   from many rounds of review and comments.  In particular, the
   following people have made significant contributions to this
   document:

   Matthew Green, Michael Neumayer, Volker Paulsen, Kurt Roeckx, Vesa
   Ruokonen, Magnus Tjernstrom, Stefan Zehl.

10. References

   [KEYWORDS]   Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

   [ABNF]       Crocker, D. and P. Overell, "Augmented BNF for Syntax
                Specifications: ABNF", RFC 2234, November 1997.

   [IRC]        Oikarinen, J. and D. Reed, "Internet Relay Chat
                Protocol", RFC 1459, May 1993.

   [IRC-ARCH]   Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
                April 2000.

   [IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
                2812, April 2000.

   [IRC-CHAN]   Kalt, C., "Internet Relay Chat: Channel Management", RFC
                2811, April 2000.

   [ZLIB]       Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data
                Format Specification version 3.3", RFC 1950, May 1996.

   [DEFLATE]    Deutsch, P., "DEFLATE Compressed Data Format
                Specification version 1.3", RFC 1951, May 1996.

   [GZIP]       Deutsch, P., "GZIP file format specification version
                4.3", RFC 1952, May 1996.

   [IDENT]      St. Johns, M., "The Identification Protocol", RFC 1413,
                February 1993.

   [TLS]        Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
                January 1999.

11. Author's Address

   Christophe Kalt
   99 Teaneck Rd, Apt #117
   Ridgefield Park, NJ 07660
   USA

   EMail: kalt@stealth.net

12.  Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

 

Previous: RFC 2812 - Internet Relay Chat: Client Protocol

 

Next: RFC 2814 - SBM (Subnet Bandwidth Manager): A Protocol for RSVP-based Admission Control over IEEE 802-style networks

 


[ RFC Index | RFC Search | Usenet FAQs | Web FAQs | Documents | Cities ]